

Smart imagers integration in 3D stack technology

D43D Workshop June 2017

STMicroelectronics/Imaging Division

Jerome Chossat

Presentation content 2

- Why smart imagers ?
- Rationale for using 3D stacking
- Description of STMicroelectronics 3D stacked smart imager prototype
- Next steps and directions for 3D over target markets

Why smart imagers ?

Case analysis: Indoor people detection

Practical example of people detection system running on VGA image at 30 fps.

.

•

.

From Imager to Analyses – a complete chain 5

Benefits of local processing – privacy by design 6 Conventional camera with image analysis performed in the cloud **High Privacy risk** High transmission energy Image data transfer High Bandwidth requirement Camera system Computer vision processing Image Capture Network & Decision layer Smart camera with image analysis performed on-chip Low transmission Low Privacy Risk energy aponymized Meta data Smart Camera Low Bandwidth requirement Image Capture & Network Decision layer Computer vision

Rationale for 3D stacking

3D stacking rationale for image sensors

- Enables access to advanced digital technology nodes without effort of porting on a specific imager process.
- Allows an optimization of the pixel process on the top die.
- Device X,Y dimensions can be minimum, and are only dependent of pixel size and array resolution → Benefits on cost and footprint.
- Much better power consumption as logic is developed on thinner technology.
- Large area in the bottom die for integrating functions with added values. Enable proposal for one-chip device as self content camera head, easy to integrate in a system, and including :
 - Image sensor
 - Image signal processing
 - Computer vision
 - Security IPs
 - Opening a world new capabilities...
- Privacy by design (image never sent out)
- Thermal to be modeled and managed carefully to avoid visible thermal artifacts on the image.

27/06/2017

STMicroelectronics 3D stacked smart imager prototype

Image Sensor 3D stack technology 10

- Wafer on Wafer stacking
- Hybrid bonding technology

- Passive substrate replaced by advance digital CMOS wafer
- Cut done at Column level only pixels matrix on the top die.

Image Sensor 3D stack technology

3D stacking

- Fine pitch interco thanks to Hybrid Bonding technology
- Top die optimized for pixel keep only pixel layers
- Process developed with CEA/Leti

Credits: STM CRL R&D 3D team

11

Hybrid Bonding Interface

- 100% yield measured on electrical structures
 - Including 30k daisy chains
 - Alignment perf <200nm +/-3s

Area budget available on both layers

13

• Example top and bottom dies breakdown for a

- 14Mpix, 1.5um pixel pitch, imager or
- 3.5Mpix 3um device (2x2 pixel grouping) .

3D Stack imager content 14

93D smart camera use cases shown at CES

Power consumption and thermal

Goal

- To minimize global heating and avoid increasing dark current
- To minimize local heating (hot spots) which could become visible on the imager.
- Architecture
 - Frequency reduction higher than area increase
 → IP dependent gain b/w 10% and 60%
 - Easier timing closure at ¼ frequency
 → saving b/w 10% and 30%
 - Can work at lower voltage (e.g. 1.0V instead of 1.1V)
 → 10% saving

Measurements

Algorithm	speed	Power
Image Signal Processing	30fps	82mW
Face detection	10fps	39mW
Face Identification	10fps	21mW
Human Body detection	3.6fps	50mW

• Modeling

life.augmented

Next steps and directions for 3D

Convolutional Neural Networks 19

- State of the Art convolutional neural networks are now delivering high performances for classification and detection.
- Their integration in constrained systems is however still challenging in term of:
 - Memory size
 - Memory bandwidth/granularity
- 3D is helping as:
 - Stacking a 3rd layer for increasing total memory budget
 - Providing a direct interconnect b/w a layer of small distributed memories and a layer of HW accelerators.

3D directions over target markets 20

Thanks for your attention

